其他
几何画板解析2017年湖南长沙中考倒二(函数相关)
(点击“初中数学延伸课堂”关注)
(2017·湖南长沙)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=k/x(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;
(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.
①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;
②若a>2b>3c,x2=1,求点P(c/a,b/a)与原点O的距离OP的取值范围.
(重要说明:从9月9日开始,不定期发布多篇(最多8篇)文章,可依次点击“标题”阅读相应的文章。如果您想学习几何画板制作课件,请详细阅读文章末尾的说明.)
扫描下面二维码,关注或分享本公众号:zzdyunke(初中数学延伸课堂). 添加关注后,进入公众号,输入数学“1”可进入《几何画板》使用实例视频教程(622分钟).本公众号对应的QQ群:178733124(课件制作学习交流群),530471110(魔方数学答疑群).
从9月9日开始,不定期发布多篇(最多8篇)文章,可依次点击“标题”阅读相应的文章。
如果您想学习几何画板,请详细阅读上述文章末尾的说明.